13 research outputs found

    The effect of 3D stereopsis and hand-tool alignment on learning effectiveness and skill transfer of a VR-based simulator for dental training

    Full text link
    Dental simulators gained prevalence in recent years. Important aspects distinguishing VR hardware configurations are 3D stereoscopic rendering and visual alignment of the user's hands with the virtual tools. New dental simulators are often evaluated without analysing the impact of these simulation aspects. In this paper, we seek to determine the impact of 3D stereoscopic rendering and of hand-tool alignment on the teaching effectiveness and skill assessment accuracy of a VR dental simulator. We developed a bimanual simulator using an HMD and two haptic devices that provides an immersive environment with both 3D stereoscopic rendering and hand-tool alignment. We then independently controlled for each of the two aspects of the simulation. We trained four groups of students in root canal access opening using the simulator and measured the virtual and real learning gains. We quantified the real learning gains by pre- and post-testing using realistic plastic teeth and the virtual learning gains by scoring the training outcomes inside the simulator. We developed a scoring metric to automatically score the training outcomes that strongly correlates with experts' scoring of those outcomes. We found that hand-tool alignment has a positive impact on virtual and real learning gains, and improves the accuracy of skill assessment. We found that stereoscopic 3D had a negative impact on virtual and real learning gains, however it improves the accuracy of skill assessment. This finding is counter-intuitive, and we found eye-tooth distance to be a confounding variable of stereoscopic 3D, as it was significantly lower for the monoscopic 3D condition and negatively correlates with real learning gain. The results of our study provide valuable information for the future design of dental simulators, as well as simulators for other high-precision psycho-motor tasks.Comment: 26 pages, 15 figures, Accepted at online journal PLoS ON

    Comparison of Neck Movement between Dentists with and without Work Related Musculoskeletal Pain

    Get PDF
    AbstractObjective: To compare neck movement between dentists with and without work related musculoskeletal pain. Method: By ways of purposive sampling, this case-control study recruited 19 dentists; 10 and 9 with and without work related musculoskeletal pain respectively. While performing scaling in gingivitis patients, the dentists’ degrees of neck flexion and lateral flexion were measured by electrogoniometer and recorded by ultrasonic recorder every second until finishing work. Data from the two groups were analyzed by Datalog. Results: The 10th, 50th and 90th percentiles of neck flexion among dentists with work related musculoskeletal pain were 25.67, 39.52 and 50.16 degree, respectively; while those of dentists without pain were 20.58, 32.24, and 40.25 degree, respectively. The 10th, 50th and 90th percentiles of the right lateral flexion were 2.38, 15.06, and 23.45 degree, respectively among dentists with pain and 3.02, 8.68, and 18.0 degree, respectively, among those without pain. For neck lateral flexions to the left, there were 1.80, 9.0, and 27.81 degree and 1.44, 5.22, and 13.68 degree for dentists with and without musculoskeletal pain respectively. Dentists with pain had greater degree of neck flexion and right and left lateral flexions in 10th, 50th and 90th percentiles except the 10th percentile of right lateral flexion. The results showed that degree of neck flexion, right and left lateral flexion movement between dentists with and without musculoskeletal pain were significantly different in statistical output (p<0.05). Dentists with pain had static posture in neck flexion 26.70% and in lateral flexion 29.38% of working time; while those without pain had static posture in neck flexion 20.70% and in lateral flexion 51.35% of such time. Conclusion: Neck flexion and lateral flexion among dentists with work related musculoskeletal pain were significantly higher than in dentists without such pain.Keywords: electrogoniometer, musculoskeletal disorders (MSD), joint range of motion, neck range of motion, dentist āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ: āđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ„āļ­āļ‚āļ“āļ°āļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļ—āļĩāđˆāļĄāļĩāđāļĨāļ°āđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ›āļ§āļ”āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­āļˆāļēāļāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļ§āļīāļ˜āļĩāļāļēāļĢāļĻāļķāļāļĐāļē: āļĢāļđāļ›āđāļšāļšāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļ›āđ‡āļ™ case-control study āđ‚āļ”āļĒāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āđ€āļ›āđ‡āļ™āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒ 19 āļ„āļ™ āđāļšāđˆāļ‡āđ€āļ›āđ‡āļ™āļœāļđāđ‰āļĄāļĩāļ­āļēāļāļēāļĢāļ›āļ§āļ”āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­ 10 āļ„āļ™ āđāļĨāļ°āđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢ 9 āļ„āļ™ āđƒāļŦāđ‰āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļœāļđāđ‰āļĢāđˆāļ§āļĄāļ§āļīāļˆāļąāļĒāļ‚āļđāļ”āļŦāļīāļ™āļ™āđ‰āļģāļĨāļēāļĒāļ—āļļāļāļ•āļģāđāļŦāļ™āđˆāļ‡āđƒāļ™āļŠāđˆāļ­āļ‡āļ›āļēāļāļ­āļēāļŠāļēāļŠāļĄāļąāļ„āļĢ āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ„āļ­āļ—āļąāļ‡āđ‰ āđāļāļ™āļāđ‰āļĄ-āđ€āļ‡āļĒ āđāļĨāļ°āđāļāļ™āļ‹āđ‰āļēāļĒ-āļ‚āļ§āļē āđ‚āļ”āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļ•āđˆāļ­āđāļšāļšāļ­āļīāđ€āļĨāļ„āđ‚āļ—āļĢāļ™āļīāļ„ āļšāļąāļ™āļ—āļķāļāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āđ‚āļ”āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ­āļąāļĨāļ•āļĢāļēāđ‚āļ‹āļ™āļīāļ„āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ—āļļāļ 1āļ§āļīāļ™āļēāļ—āļĩ āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļŠāļ­āļ‡āļāļĨāļļāđˆāļĄāđ‚āļ”āļĒāđ‚āļ›āļĢāđāļāļĢāļĄ Datalog āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē: āļ„āđˆāļēāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļĄāļļāļĄāļāđ‰āļĄāļ„āļ­āļ—āļĩāđˆāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āļ™āļ•āđŒāđ„āļ—āļĨāđŒāļ—āļĩāđˆ 10, 50 āđāļĨāļ° 90 āļ‚āļ­āļ‡āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ›āļ§āļ”āđ€āļ—āđˆāļēāļāļąāļš 25.67, 39.52 āđāļĨāļ° 50.16 āļ­āļ‡āļĻāļēāļ•āļēāļĄāļĨāļģāļ”āļąāļš āļŠāđˆāļ§āļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāđ€āļ—āđˆāļēāļāļąāļš 20.58, 32.24 āđāļĨāļ° 40.25 āļ­āļ‡āļĻāļē āļ„āđˆāļēāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ—āļēāļ‡āļ‚āļ§āļēāļ—āļĩāđˆāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āļ™āļ•āđŒāđ„āļ—āļĨāđŒāļ—āļĩāđˆ 10, 50 āđāļĨāļ° 90 āļ‚āļ­āļ‡āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāđ€āļ—āđˆāļēāļāļąāļš2.38, 15.06 āđāļĨāļ° 23.45 āļ­āļ‡āļĻāļēāļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāđ€āļ—āđˆāļēāļāļąāļš 3.02, 8.68āđāļĨāļ° 18.0 āļŠāđˆāļ§āļ™āļāļēāļĢāđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ—āļēāļ‡āļ‹āđ‰āļēāļĒāļ™āļąāđ‰āļ™ āļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāđ€āļ—āđˆāļēāļāļąāļš 1.80, 9.0āđāļĨāļ° 27.81 āļ­āļ‡āļĻāļē āđāļĨāļ°āļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāđ€āļ—āđˆāļēāļāļąāļš 1.44, 5.22 āđāļĨāļ° 13.68 āļ­āļ‡āļĻāļēāļ•āļēāļĄāļĨāļģāļ”āļąāļšāđ‚āļ”āļĒāļāļĨāļļāđˆāļĄāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļĄāļĩāļ„āđˆāļēāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļāđ‰āļĄāļ„āļ­āđāļĨāļ°āđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ‹āđ‰āļēāļĒāļ‚āļ§āļēāļ‚āļ“āļ°āļ›āļāļīāļšāļąāļ•āļīāļ‡āļēāļ™āļĄāļēāļāļāļ§āđˆāļēāļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ—āļĩāđˆāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āļ™āļ•āđŒāđ„āļ—āļĨāđŒ 10, 50 āđāļĨāļ° 90 āļĒāļāđ€āļ§āđ‰āļ™āđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ—āļēāļ‡āļ‚āļ§āļēāļ—āļĩāđˆāđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒāđ„āļ—āļĨāđŒāļ—āļĩāđˆ 10 āđ‚āļ”āļĒāļ„āđˆāļēāļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ„āļ­āļĄāļļāļĄāļāđ‰āļĄ-āđ€āļ‡āļĒāđāļĨāļ°āđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ‹āđ‰āļēāļĒ-āļ‚āļ§āļēāļ‚āļ“āļ°āļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡ 2 āļāļĨāļļāđˆāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ (P < 0.05) āļœāļđāđ‰āļĢāđˆāļ§āļĄāļāļēāļĢāļĻāļķāļāļĐāļēāļĄāļĩāļŠāđˆāļ§āļ‡āļ—āļģāļ‡āļēāļ™āļ„āđ‰āļēāļ‡āļ—āđˆāļēāđ€āļ”āļīāļĄāđƒāļ™āđāļ™āļ§āļāđ‰āļĄāļ„āļ­āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļēāļ™āļēāļ™ āđ‚āļ”āļĒāđƒāļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 26.70 āļ‚āļ­āļ‡āđ€āļ§āļĨāļēāļ—āļģāļ‡āļēāļ™āļ—āļąāļ‡āđ‰ āļŦāļĄāļ” āđāļĨāļ°āļ„āđ‰āļēāļ‡āļ—āđˆāļēāđ€āļ”āļīāļĄāđāļ™āļ§āđ€āļ­āļĩāļĒāļ‡āļ„āļ­āļ‹āđ‰āļēāļĒ-āļ‚āļ§āļēāđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 29.38 āļ‚āļ­āļ‡āđ€āļ§āļĨāļēāļ—āļąāļ‡āđ‰ āļŦāļĄāļ” āļŠāđˆāļ§āļ™āļāļĨāļļāđˆāļĄāļ—āļĩāđˆāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ°20.70 āđāļĨāļ° 51.35 āļ•āļēāļĄāļĨāļģāļ”āļąāļšāļ‚āļ­āļ‡āđ€āļ§āļĨāļēāļ—āļąāļ‡āđ‰ āļŦāļĄāļ” āļŠāļĢāļļāļ›: āļĄāļļāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļāđ‰āļĄāđāļĨāļ°āđ€āļ­āļĩāļĒāļ‡āļ‹āđ‰āļēāļĒāļ‚āļ§āļēāļ‚āļ­āļ‡āļāļĨāļļāđˆāļĄāļ—āļąāļ™āļ•āđāļžāļ—āļĒāđŒāļ—āļĩāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ›āļ§āļ”āļĄāļĩāļ„āđˆāļēāļĄāļēāļāļāļ§āđˆāļēāļāļĨāļļāđˆāļĄāđ„āļĄāđˆāļĄāļĩāļ­āļēāļāļēāļĢāļ›āļ§āļ”āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­āļˆāļēāļāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ„āļģāļŠāļģāļ„āļąāļ: āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļ•āđˆāļ­āđāļšāļšāļ­āļīāđ€āļĨāļ„āđ‚āļ—āļĢāļ™āļīāļ„, āļ„āļ§āļēāļĄāļœāļīāļ”āļ›āļāļ•āļīāļ‚āļ­āļ‡āļāļĢāļ°āļ”āļđāļāđāļĨāļ°āļāļĨāđ‰āļēāļĄāđ€āļ™āļ·āđ‰āļ­, āļŠāđˆāļ§āļ‡āļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ‚āđ‰āļ­,āļŠāđˆāļ§āļ‡āļ­āļ‡āļĻāļēāļāļēāļĢāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđ„āļŦāļ§āļ‚āļ­āļ‡āļ„āļ­, āļ—āļąāļ™āļ•āđāļžāļ—āļĒ

    A Collaborative Medical Case Authoring Environment Based on the UMLS

    No full text
    Non

    Student Modeling for Collaborative Medical Problem-Based Leaning

    No full text
    Today a great many medical schools have turned to a problem-based learning (PBL) approach to teaching. PBL instructional models vary but the general approach is student-centered, small group, collaborative problem-based learning activities. While PBL has many strengths, effective PBL requires the tutor to provide a high degree of personal attention to the students. In the current academic environment where resources are becoming increasingly scarce and costs must be reduced, providing such attention becomes increasingly difficult. This is exacerbated by the fact that medical school faculty, in particular, often have limited time to devote to teaching. As a consequence, medical students often do not get as much facilitated PBL training as they might need or want. Our proposed work combines concepts from Intelligen

    A collaborative intelligent tutoring system for medical problem-based learning

    No full text
    This paper describes COMET, a collaborative intelligent tutoring system for medical problem-based learning. The system uses Bayesian networks to model individual student knowledge and activity, as well as that of the group. It incorporates a multi-modal interface that integrates text and graphics so as to provide a rich communication channel between the students and the system, as well as among students in the group. Students can sketch directly on medical images, search for medical concepts, and sketch hypotheses on a shared workspace. The prototype system incorporates substantial domain knowledge in the area of head injury diagnosis. A major challenge in building COMET has been to develop algorithms for generating tutoring hints. Tutoring in PBL is particularly challenging since the tutor should provide as little guidance as possible while at the same time not allowing the students to get lost. From studies of PBL sessions at a local medical school, we have identified and implemented eight commonly used hinting strategies. We compared the tutoring hints generated by COMET with those of experienced human tutors. Our results show that COMET’s hints agree with the hints of the majority of the human tutors with a high degree of statistical agreement (McNemar test, p = 0.652, Kappa = 0.773)

    P.: Modeling Individual and Collaborative Problem Solving

    No full text
    Abstract. Since problem solving in group problem-based learning is a collaborative process, modeling individuals and the group is necessary if we wish to develop an intelligent tutoring system that can do things like focus the group discussion, promote collaboration, or suggest peer helpers. We have used Bayesian networks to model individual student knowledge and activity, as well as that of the group. The validity of the approach has been tested with student models in the areas of head injury, stroke and heart attack. Receiver operating characteristic (ROC) curve analysis shows that, the models are highly accurate in predicting individual student actions. Comparison with human tutors shows that group activity determined by the model agrees with that suggested by the majority of the human tutors with a high degree of statistical agreement (McNemar test, p = 0.774, Kappa = 0.823).

    Clinical-reasoning skill acquisition through intelligent group tutoring

    No full text
    This paper describes COMET, a collaborative intelligent tutoring system for medical problembased learning. COMET uses Bayesian networks to model individual student knowledge and activity, as well as that of the group. Generic domainindependent tutoring algorithms use the models to generate tutoring hints. We present an overview of the system and then the results of two evaluation studies. The validity of the modeling approach is evaluated in the areas of head injury, stroke and heart attack. Receiver operating characteristic (ROC) curve analysis indicates that, the models are accurate in predicting individual student actions. Comparison of learning outcomes shows that studen

    In Proc. Int’l Joint Conference on Artificial Intelligence (IJCAI05), Edinburgh, 2005. Clinical-Reasoning Skill Acquisition through Intelligent Group Tutoring

    No full text
    This paper describes COMET, a collaborative intelligent tutoring system for medical problembased learning. COMET uses Bayesian networks to model individual student knowledge and activity, as well as that of the group. Generic domainindependent tutoring algorithms use the models to generate tutoring hints. We present an overview of the system and then the results of two evaluation studies. The validity of the modeling approach is evaluated in the areas of head injury, stroke and heart attack. Receiver operating characteristic (ROC) curve analysis indicates that, the models are accurate in predicting individual student actions. Comparison of learning outcomes shows that studen

    Additional file 1 of Deep learning in oral cancer- a systematic review

    No full text
    Additional file 1: Table 1S. Modified leading questions of QUADAS-2 for critical appraisal. Table 2S. Quality assessment of included studies using QUADAS-2 (Classification studies). Table 3S. Quality assessment of included studies using QUADAS-2 (Object detection studies). Table 4S. Quality assessment of included studies using QUADAS-2 (Segmentation studies). Table 5S. Quality assessment of included studies using QUADAS-2 (Prognosis prediction studies)
    corecore